top of page
Amount: 
1.198.023 RON
Start date: 01.09.2021 
End date:  31.08.2024

THUNDER

2

TECHNIQUES FOR UNCONVENTIONAL NANO-DESIGNING IN THE ENERGY-RELIABILITY REALM

​

BEYOND MOORE - WHEN INTERCONNECTS MATTER MOST

ABSTRACT  Detailed analyses and comparisons of unconventional designs for nano-technologies aiming to minimize power without compromising on reliability. These fall under custom designs taking steps towards the theoretical limits of energy efficiency. As fabrication at the nano-scale is not an option for us, the approach we will use is through extremely accurate modeling of the novel co-designing power-reliability techniques we propose. We expect to identify and confirm ultra low-power schemes robust against both noises and variations, and consuming at least one order of magnitude less energy than any other designs.
 
RESULTS  
  • Detailed analyses of consecutive-k-out-of-n systems

  • Establishing simple formulas for estimating the reliability of consecutive-k-out-of-n systems

  • Discovered links between consecutive systems and the generalized Fibonacci numbers

  • Showed that Rel(logn-out-of-n, 0.5) ~ 0.5 by starting from Rel(k-out-of-n, 0.5) ~ F(k, n)/2^n

  • Analyzed all 3x3 planar networks and simulating them in 7nm ASAP

  • Performed 19,683 MC simulations followed by statistically processing all the 137,781 equivalent resistances

  • Identified similarities between the cumulative distribution function and reliability polynomials, thus revealing links between theory (Moore-Shannon) and practice (Kirchhoff and Ohm)

  • Modeling and estimating the reliability of 3D hammocks

  • Proved the links between consecutive systems and generalized Fibonacci numbers

  • Confirmed that k_min = logn + 3 for 1D consecutive systems

  • Simulated 2D and 2.5D consecutive systems, and conjecturing that k_min = |(logn + 3)/m|

  • Simulated various networks using ASAP 7nm and PTM 22nm (Spice, Cadence), as well as Simon

  • Advanced the concepts of Pascal and Catalan surfaces (3D)

  • Proposed approximations of the reliability polynomial by using splines

  • Explored delta-wye transformations for approximating the reliability polynomials

  • Established that the reliability polynomials of consecutive systems have unbounded roots

  • Demonstrated that sorting networks are highly reliable only for fan-ins of 2, 3, 4 (and maybe 5)

  • Proposed a way of modeling logic gates based on the nonlinearity of the transfer function

  • Improved on modeling the reliability of consecutive systems

  • Proved that the reliability polynomials of circular consecutive systems also have unbounded roots

  • Realized that consecutive systems are a good match only for a handful of nanotechnologies

  • Proposed a model for energy estimation centered on wire lengths

  • Assessed wire lengths for quite a few different network types

  • Combined the reliability models with the power/energy ones, and showed how to minimize power at a given reliability, or how to maximize reliability at a given power

  • Distinguished networks that are appropriate for communications versus those for computations

  • Conceived an algorithm which computes the reliability of hammock networks exactly

  • Designed logic gates in 7nm ASAP

  • Explored the signal to noise margins (SNM) and the power consumptions of such gates

  • Compared such results with reported ones in 3 nm, 2 nm, as well as carbon nanotubes (CNT)

  • Designed optical logic gates using hexagonal photonic crystals

  • Analyzed the effects variations play on signal attenuation as well as power consumption

  • Performed simulations for characterizing the behaviors of ions in water inside CNT

  • Simulated and characterized CNT nanofluidic memristors for fluidic logic gates

  • The most promising results obtained were compared with those reported in the latest publications

  • The results have been published as articles in 11 ISI journals (6xQ1, 2xQ2, and 3xQ3 with a cumulative IF of 37.2) as well as 11 ISI conferences, and have been presented 13 times (out of which 8 invited)

 

REZUMAT — Analize detaliate si comparatii ale unor proiecte neconventionale pentru nano-tehnologii in scopul de a minimiza puterea fara a face compromisuri la fiabilitate. Acestea se incadreaza in proiectare customizata si face pasi inspre limitele teoretice ale eficientei energetice. Deoarace fabricarea la scara nano nu este o optiune viabila, abordarea pe care o vom folosi este cea de modelare extrem de precisa a noilor tehnici de proiectare putere-fiabilitate pe care le propunem. Ne asteptam sa identificam si sa confirmam scheme de putere foarte scazuta robuste la zgomote si variatii, care sa consume cu cel putin un ordin de marime mai putin decat orice alte circuite. 
​
PREZENTARE  Acest proiect s-a axat pe modelarea, simularea si estimarea fiabilitatii si a puteri/energiei consumate de retele regulate (similare cu cele ale neuronilor biologici), pentru identificarea unor tehnici noi si neconventionale de proiectare, care sa permita optimizarea simultana a fiabilitatii si puterii consumate.
 
Din punct de vedere al fiabilitatii, am analizat diverse aproximari ale polinoamelor de fiabilitate. Am inceput cu retele consecutive (optime pentru comunicatie), unde am gasit o solutie prin care sa se poata estima extrem de rapid si precis fiabilitatea (pe baza seriei lui Fibonacci generalizate si extensiei ecuatiei lui Binet). Am aratat ca polinoamele de fiabilitate asociate retelelor consecutive au radacini nelimitate. Aceste fundamente matematice pe care le-am obtinut ne-au permis imbunatatirea modelelor, pe baza carora am aratat ca retelele consecutive se preteaza, cu precadere, pentru nano-tehnologii fluidice (nano-magnetice, cuantice, etc.). Un al doilea tip de retea de interes a fost reprezentata de retelele hamac (considerate optime pentru calcule), unde am propus un algoritm foarte eficient pentru calcularea exacta a fiabilitati. Pe baza acestor rezultate “partiale” am aratat cum am putea balansa fiabilitatea retelelor de tip hamac cu cea a unor retele consecutive, aspect de proiectare important deoarece permite o optimizare (tehnologic independenta) a fiabilitatii calculelor versus fiabilitatea comunicatilor.
 
Pentru a analiza puterea/energia consumata, am inceput cu ASAP 7nm si simulari de tip Monte Carlo a tuturor retelelor de 3x3 afectate de variatii. Analiza statistica a identificat asemanari intre functia de distributie cumulativa si polinoamul de fiabilitate asociat retelei, ceea ce sugereaza existenta unor legaturi intre fiabilitatea teoretica si variatiile dispozitivelor care formeaza reteaua, sau, echivalent, legaturi intre teoria matematica a fiabilitatii (Moore-Shannon) si puterea/energia circuitelor electrice (Kirchhoff si Ohm), pe care intentionam sa le exploram in continuare. Ulterior am trecut la nivelul de poarta logica unde am introdus un model bazat pe neliniaritatea functiei de transfer (a tranzistorilor), care sa ne permita estimarea puterii consumate. In final, am evaluat lungimea conexiunior pentru diverse retele, deoarece, in tehnologii nanometrice, putera si energia consumata sunt aproape integral determinate de conexiuni.
​
Pasul urmator a fost se integram modele de fiabilitate cu modele pentru energie/putere consumata, si sa identificam solutii pentru o proiectare optima, adica o proiectare care minimizeaza puterea la o fiabilitate data, sau maximizeaza fiabilitatea la o putere data, etc. Aceste concepte au fost analizate/comparate in tehnologii diferite: nano-CMOS (inclusiv nano tuburi de carbon), fotonice (folosind cristale fotonice cu latice hexagonala), si fluidice (nano tuburi de carbon, apa si ioni), estimand fiabilitatea (toleranta la variatii si zgomote) si puterea consumata. A devenit clar ca, pe masura ce dimensiunile scad, variatiile vor juca un rol din ce in ce important, si ca optimizarea conexiunilor este imperativ necesara in vedera reducerii puterii/ energiei consumate. Analiza comparativa, efectuata spre final, a identificat memristorii si tehnologiile nano-fluidice ca optiuni cu potential ridicat. â€‹
​
​

Rezumat 2021

In ultimele patru luni ale lui 2021 ne-am axat pe analiza retelelor consecutive-k-out-of-n (pentru k si n de valori foarte mari), si am gasit o solutie prin care sa estimam extrem de rapid si precis fiabilitatea (pe baza seriei lui Fibonacci generalizate si a unei extensii a ecuatiei lui Binet). In paralel am analizat toate retelele planare (2D) de 3x3 si le-am simulat in 7nm ASAP, inclusiv Monte Carlo (MC). Analiza rezultatelor obtinute a identificat asemanari intre CDF (“cumulative distribution function”) si polinoamele de fiabilitate, sugerand o legatura intre fiabilitate si variatiile dispozitivelor care formeaza reteaua.

Ca rezultate, in aceasta perioada, mentionam ca am:

  • analizat in detaliu retele consecutive-k-out-of-n

  • stabilit formule simple care ne-au permis estimarea fiabilitatii acestor retele

  • identificat faptul ca Rel(k-out-of-n, 0.5) ~ F(k, n)/2^n, si ca Rel(logn-out-of-n, 0.5) ~ 0.5

  • aprofundat legatura intre retelele consecutive si numerele lui Fibonacci generalizate

  • analizat toate retelele 3x3 planare si le-am simulat folosind 7nm ASAP

  • efectuat 19,683 simulari MC si am analizat cele 137,781 rezistente echivalente

  • sesizat o asemanare intre CDF si polinoamele de fiabilitate, identificand o legatura intre teorie (Moore-Shannon) si practica (Kirchhoff si Ohm)

 

Rezumat 2022

In aceasta etapa am modelat si estimat fiabilitatii retelelor hamac 3D. Am validat legatura dintre retelele consecutive si numerele lui Fibonacci generalizate, reusind sa demonstram ca k_min = logn + 3 pentru retele consecutive 1D, aspect generalizat ulterior pentru retele consecutive 2D si 2.5D, unde ne asteptam ca k_min = |(logn + 3)/m|. Pe baza acestor rezultate “partiale” am reusit sa balansam fiabilitatea hamacelor 3D cu cea a unor sisteme consecutive 2.5D, aspect de proiectare important, deoarece permite o optimizare (tehnologic independenta) a fiabilitatii calculelor versus fiabilitatea comunicatilor. Pentru estimarea puterii consumata am folosind ASAP 7nm si PTM 22nm impreuna cu Spice, Cadence, si Simon. In paralel am introdus conceptul de suprafata Pascal si am estimat aproximari ale polinoamelor de fiabilitate cu functii spline, cat si folosind transformarea stea-triunghi (delta-wye). Am reusit sa aratam ca polinoamele de fiabilitate ale sistemelor consecutive au radacini nelimitate si am introdus un model pentru porti logice bazat pe neliniaritatea functiei de transfer (panta corespunzand rezistentelor tranzistorilor), model care a permis estimarea puterii consumate.

Ca rezultate, in aceasta perioada, mentionam ca am:

  • modelat si estimat fiabilitatea retelelor hamac 3D

  • validat legatura intre retelele consecutive si numerele lui Fibonacci generalizate

  • demonstat ca k_min = logn + 3 pentru retele consecutive 1D

  • simulat retele consecutive 2D si 2.5D, estimand ca k_min = |(logn + 3)/m|

  • simulat diverse retele folosind ASAP 7nm si PTM 22nm (Spice, Cadence), si Simon

  • introdus conceptul de suprafata Pascal si Catalan (3D)

  • determinat aproximari cu functii spline a polinoamelor de fiabilitate

  • analizat transformarea stea-triunghi (delta-wye) pentru aproximarea polinoamelor de fiabilitate

  • aratat ca polinoamele de fiabilitate ale sistemelor consecutive au radacini nelimitate

  • aratat ca retelele de sortare sunt competitive numai pentru 2, 3, 4 (eventual 5) intrari

  • introdus un model pentru porti logice bazat pe neliniaritatea functiei de transfer

 

Rezumat 2023

Fundamenete matematice obtinute ne-au permis sa imbunatatim modelelor pentru estimarea fiabilitatii, reusind sa aratam ca retelele consecutive se preteaza pentru nano-tehnologii fluidice, magnetice, si cuantice. Trecand la nivelul de poarta logica, am introdus un model bazat pe neliniaritatea functiei de transfer (a tranzistorilor) impreuna cu lungimea conexiunilor. Acestea au permis estimarea puterii consumate. Am evaluat lungimea conexiunior pentru diverse retele (in tehnologii nanometrice, putera si energia consumata sunt determinate de conexiuni), si am integrat aceste rezultate cu modelele de fiabilitate. In acest fel, am reusit sa identificam metode pentru minimizarea puterii la o fiabilitate data, sau pentru maximizarea fiabilitatii la o putere data. In plus, am gasit un algoritm foarte eficient pentru calcularea exacta a fiabilitati retelelor hamac (considerate optime pentru calcule).

Ca rezultate, in aceasta perioada, mentionam ca am:

  • perfectionat modelele pentru estimarea fiabilitatii retelelor consecutive

  • aratat ca polinoamele de fiabilitate ale retelele consecutive circulare au radacini nelimitate

  • identificat faptul ca retelele consecutive se preteaza doar pentru anumite (nano-)tehnologii

  • utilizat un model pentru estimarea energiei incorporand lungimea conexiunior/sarmelor

  • evaluat lungimea conexiunilor/sarmelor pentru mai multe tipuri de retele

  • integrat modele de fiabilitate cu modele pentru energie/putere consumata aratand cum se poate minimiza puterea la o fiabilitate data, sau cum se poate maximiza fiabilitatea la o putere data

  • identificat retelele care se preteaza cel mai bine pentru comunicatie si pentru calcule

  • proiectat un algoritm pentru calcularea exacta a fiabilitatilor retelelor hamac

 

Rezumat 2024

Integrarea modelelor de fiabilitate cu cele pentru energie/putere a fost utilizata pentru proiectarea unor porti logice in cateva tehnologii diferite: nano-CMOS (inclusiv nano tuburi de carbon), fotonice (folosind cristale fotonice cu latice hexagonala), si fluidice (nano tuburi de carbon, apa si ioni). Am estimat atat fiabilitatea (toleranta la variatii si zgomote) cat si puterea consumata. A rezultat ca, pe masura ce dimensiunile scad, variatiile juca un rol din ce in ce mai important, si ca optimizarea conexiunilor este imperativ necesara in vedera reducerii puterii/energiei consumate. Analiza comparativa, efectuata spre final, a identificat memristorii si tehnologiile nano-fluidice ca optiuni cu potential ridicat.

Ca rezultate, in aceasta perioada, mentionam ca am:

  • proiectat porti logice in 7nm ASAP

  • analizat marginile de zgomot (SNM) si puterea consumata

  • comparat aceste rezultatele cu implementari in 3 nm, 2 nm, si nanotuburi de carbon (CNT)

  • proiectat porti logice folosind cristale fotonice cu latice hexagonala

  • analizat efectul variatiei dimensiunilor asupra atenuarii si puterii consumate

  • simulat comportamentul ionilor in apa in interiorul unor CNT

  • identificat si simulat memristori nanofluidici cu CNT pentru porti logice

  • analizat rezultatele obtinute, in comparatie cu cele din publicatii foarte recente

​
Echipa

Team

Valeriu_Beiu.jpg
Valeriu Beiu
Principal Investigator
DAUS_Leonard.jpg
Leonard Daus
Technical University of
Civil Engineering Bucharest

BrainMap
TACHE_Mihai.jpg
Mihai Tache
Politehnica University of Bucharest
BrainMap

Publications

11 ISI Journal Articles
 
V.-F. Drăgoi, S.R. Cowell, and V. Beiu 
Four Input Sorter Good, Larger Ones Not So Good 
IEEE Trans. Nanotech., vol. 20, pp. 775-783, 28 Oct. 2021 
WOS:000714713600001
https://doi.org/10.1109/TNANO.2021.3113731 

G. Cristescu, V.-F. Drăgoi, and S.-H. Hoară 
Generalized Convexity Properties and Shape Based Approximation in Networks Reliability 
Mathematics, vol. 9, no. 24, art. 3182 (pp. 1-21), 9 Dec. 2021
WOS:000735870600001 
https://doi.org/10.3390/math9243182  
 
V. Beiu , L. DăuÅŸ, M. Jianu, A. Mihai, and I. Mihai 
On a Surface Associated with Pascal’s Triangle   
Symmetry, vol. 14, no. 2, art. 411 (pp. 1-12), 19 Feb. 2022  
WOS:000767781100001 
https://doi.org/10.3390/sym14020411   

M. Nagy, S.R. Cowell, and V. Beiu 
Survey of Cubic Fibonacci Identities – When Cuboids Carry Weight 
Intl. J. Comp. Comm. & Ctrl., vol. 17, no. 2, art. 4616 (pp. 1-20), Apr. 2022 
WOS:000773365400009 
https://doi.org/10.15837/ijccc.2022.2.4616 
 
M. Jianu, L. DăuÅŸ, M. Nagy, and R.-M. Beiu 
Approximating the Level Curves on Pascal’s Surface 
Intl. J. Comp. Comm. & Ctrl., vol. 17, no. 4, art. 4865 (pp. 1-15), Aug. 2022
WOS:000829406100009

https://doi.org/10.15837/ijccc.2022.4.4865 

​

M. Jianu 

On the Roots of a Family of Polynomials 

Fractal and Fractional, vol. 7, no. 4, art. 339 (pp. 1–15), Apr. 2023 

WOS:000979658300001

https://doi.org/10.3390/fractalfract7040339

​

M. Jianu, L. DăuÅŸ, V.-F. Drăgoi, and V. Beiu 

Reliability Polynomials of Consecutive-k-out-of-n:F Systems Have Unbounded Roots 

Networks, vol. 82, no. 3, pp. 222-228, Oct. 2023 

WOS:001019193600001

https://doi.org/10.1002/net.22168

​

M. Jianu, L. DăuÅŸ, V.-F. Drăgoi, and V. Beiu

The Roots of the Reliability Polynomials of Circular Consecutive-k-out-of-n:F Systems 

Mathematics, vol. 11, no. 20, art. 4252 (pp. 1-12), Oct. 2023 

WOS:001094359800001

https://doi.org/10.3390/math11204252

​​

M. Nagy, S.R. Cowell, and V. Beiu 
On the Construction of 3D Fibonacci Spirals 
Mathematics, vol. 12, no. 2, art. 201 (pp. 1-15), Jan. 2024 
WOS:001151504700001  
https://doi.org/10.3390/math12020201
​
V.-F. Drăgoi and V. Beiu 
Which Coefficients Matter Most — Consecutive k-out-of-n:F Systems Revisited 
IEEE Trans. Reliab., vol. 73, no. 3, pp. 1633-1646, Sep. 2024 
WOS:001174259200001
https://doi.org/10.1109/TR.2024.3353908
​
V.-F. Drăgoi, M. Rowshan, and J. Yuan 
On the Closed-form Weight Enumeration of Polar Codes: 1.5d-weight Codewords
IEEE Trans. Comm., Early access, pp. 1-16, 6 May 2024 
WOS:Pending
https://doi.org/10.1109/TCOMM.2024.3394749
​​​​​​​​
​
10 ISI Proceedings Articles
V. Beiu 

The Unfolding Road from Dust to Trust (Invited)

Proc. Intl. Conf. 'Adv, 3OM: Opto-Mech., Opto-Mech. & Opti. Metro.' (Adv3OM 2021)

Timisoara, Romania (13-16 Dec. 2021), SPIE, art. 1217007, May 2022

https://doi.org/10.1117/12.2601821


V. Beiu, S.H. Hoară, and R.-M. Beiu 

Bridging Reliability to Efficiency – Consecutive Elegant and Simple Design

Proc. Intl. Conf. Comp. Comm. & Ctrl. (ICCCC 2022)

Baile Felix/Oradea, Romania (16-20 May 2022), Springer AISC, vol. 1435, pp. 387–400, Sep. 2022

https://doi.org/10.1007/978-3-031-16684-6_33

 

L. Dăuş, V.-F. Drăgoi, M. Jianu, D. Bucerzan, and V. Beiu

On the Roots of Certain Reliability Polynomials

Proc. Intl. Conf. Comp. Comm. & Ctrl. (ICCCC 2022)

Baile Felix/Oradea, Romania (16-20 May 2022), Springer AISC, vol. 1435, pp. 401–414, Sep. 2022

https://doi.org/10.1007/978-3-031-16684-6_34

​

M. Jianu, L. DăuÅŸ, S.H. Hoară, and V. Beiu 

Using Delta-Wye Transformations for Estimating Networks’ Reliability

Proc. Intl. Conf. Comp. Comm. & Ctrl. (ICCCC 2022)

Baile Felix/Oradea, Romania (16-20 May 2022), Springer AISC, vol. 1435, pp. 415–426, Sep. 2022

https://doi.org/10.1007/978-3-031-16684-6_35

​

M. Tache, S.H. Hoară, V.-F. Drăgoi, and R.-M. Beiu 

Green AI from Kirchhoff to Shannon

Proc. Intl. Conf. Comp. Comm. & Ctrl. (ICCCC 2022)

Baile Felix/Oradea, Romania (16-20 May 2022), Springer AISC, vol. 1435, pp. 433–443, Sep. 2022

https://doi.org/10.1007/978-3-031-16684-6_37

​

A.-C. Beiu, R.-M. Beiu, and V. Beiu 

Optimal Design of Linear Consecutive Systems

Proc. ACM Intl. Conf. Nanoscale Comp. and Comm. (NANOCOM’22)

Barcelona, Spain (5-7 Oct. 2022), ACM, art. 24, Oct. 2022

https://doi.org/10.1145/3558583.3558863

​

P. Poulin, S.R. Cowell, and V. Beiu 

Two-terminal Reliability of the K4-ladder - Revisited 

Proc. Intl. Conf. Math. Modeling Phys. Sci. (IC-MSQUARE 2023)

Belgrade, Serbia (28-31 Aug. 2023), Springer Proc. Maths. & Stat., vol. 446, May 2024

In D. Vlachos (eds.), Mathematical Modeling in Physical Sciences, pp. 195-209

WOS:001174259200001
https://doi.org/10.1007/978-3-031-52965-8_16

​​

H.P. Wang and V.-F. Drăgoi 

Fast Methods for Ranking Synthetic BECs

Proc. IEEE Intl. Symp. Info. Th. (ISIT 2023)

Taipei, Taiwan (25-30 Jun. 2023), IEEE Press, pp. 401–414, Jun. 2023

https://doi.org/10.1109/ISIT54713.2023.10206704

 

L. DăuÅŸ, M. Jianu, R.-M. Beiu, and V. Beiu 

A Tale of Catalan Triangles: Counting Lattice Paths

In V. E. Balas et al. (eds.): Soft Computing Applications

Springer, AISC vol. 1438, pp. 677–690, Oct. 2023

https://doi.org/10.1007/978-3-031-23636-5_52

​

V.-F. Drăgoi and V. Beiu 

Consecutive Systems Asymptotic Threshold Behaviors

In V. E. Balas et al. (eds.): Soft Computing Applications

Springer, AISC vol. 1438, pp. 677–690, Oct. 2023

https://doi.org/10.1007/978-3-031-23636-5_53

​

6 BDI Articles
G. Cristescu, V.-F. Drăgoi & S.-H. Hoara 
Generalized Convexity Properties and Shape Based Approximation in Networks Reliability
arXiv: Discrete Mathematics (cs.DM), 12 Nov. 2021 
https://doi.org/10.48550/arXiv.2111.06604 

 

M. Jianu, L. DăuÅŸ, V.-F. Drăgoi, and V. Beiu

Consecutive-k-out-of-n:F Systems Have Unbounded Roots

arXiv: Discrete Mathematics (cs.DM), 9 Aug. 2022

https://doi.org/10.48550/arXiv.2208.14173

​​

A.-C. Beiu and V. Beiu 

Designing Highly Reliable Systems Using Random Devices

IBM IEEE CAS/EDS – AI Compute Symposium, Oct. 2022

https://doi.org/10.54985/peeref.2303p1524423

​

H.P. Wang and V.-F. Drăgoi 

Fast Methods for Ranking Synthetic BECs

arXiv: Information Theory (cs.IT), 24 Apr. 2023

https://doi.org/10.48550/arXiv.2304.11781

​

V.-F. Drăgoi and V. Beiu 

Which Coefficients Matter Most – Consecutive k-out-of-n:F Systems Revisited

TechRxiv, preprint, 22 May 2023

https://doi.org/10.36227/techrxiv.23042528

 

M. Jianu and L. DăuÅŸ

Counting Lattice Paths to Find the Coefficients of Reliability Polynomials

Proc. Intl. Conf. Maths. Comp. Sci. & Tech. Edu. (ICMCSTE), ISSN: 2601-9299

Bucharest, Romania, 24-26 May 2024

http:dmi.utcb.ro/icmcste/

​

References

Presentations

V. Beiu  – Invited plenary speaker
The Unfolding Road from Dust to Trust
Intl. Conf. "Advances in 3OM: Opto-Mechatronics, Opto-Mechanics and Optical Metrology"
Timisoara, Romania, 16 Dec. 2021

http://3om-group-optomechatronics.ro/advances-in-3om-conference-2021/plenary-speakers/

V. Beiu
 – Invited keynote speaker 
A(nother) Game of Shadows
Intl. Conf. Comp. Comm. & Ctrl. (ICCCC 2022)
Baile Felix/Oradea, Romania, 16-20 May 2022
http://univagora.ro/en/icccc2022/keynote/
 

M. Jianu, L. Dăuş, M. Nagy & R.-M. Beiu

Level Curves on Pascal’s Surface

Intl. Conf. Comp. Comm. & Ctrl. (ICCCC 2022)

Baile Felix/Oradea, Romania, 16-20 May 2022

https://www.univagora.ro/en/conferinte/icccc/icccc2022/program/

https://www.univagora.ro/en/conferinte/icccc/icccc2022/awards/

Best Paper Award led to extended version being published in Intl. J. Comp. Comm. & Ctrl. (IJCCC)

V. Beiu – Invited tutorial 

The Race for Mighty AI Chips
IEEE International Conference: Sciences of Electronic, Technologies of Information and Telecommunications (SETIT 2022)
Genoa, Italy & Sfax, Tunisia, May 28-30, 2022

http://www.setit.rnu.tn/tutorials-speakers.html 

A.-C. Beiu, and V. Beiu

Designing Highly Reliable Systems Using Random Devices

IBM IEEE CAS/EDS – AI Compute Symposium (AICS 2022)

IBM Yorktown Heights, NY, USA, 12-13 Oct. 2022

https://www.zurich.ibm.com/thinklab/AIcomputesymposium.html

 

L. DăuÅŸ, M. Jianu, and A. Mihai – Invited  

Surfaces Associated with Pascal and Catalan Triangles

Joint Seminar of the Analysis, Geometry and Topology Department

Institute of Mathematics & Informatics, Bulgarian Academy of Sciences

Sofia, Bulgaria, 8 Nov. 2022

https://math.bas.bg/event/joint-seminar-of-the-analysis-geometry-and-topology-department-9/

 

V. Beiu – Invited speaker

A Brave New World … Manufactured with Atomic Precision

Intl. Workshop Soft Comp. Appls. (SOFA 2022)

Arad, Romania, 21-23 Nov. 2022

https://2022.sofa-org.eu/invited-speakers/

​

P. Poulin, S.R. Cowell, and V. Beiu

Two-terminal Reliability of the K4-ladder – Revisited

Proc. Intl. Conf. Adv. Sci. & Eng. Technol. (ASET 2023)

Dubai, UAE, 20-23 Feb. 2023

https://hct.ac.ae/en/events/aset-2023/

 

L. Daus and M. Jianu

Chromatic Polynomials for Some Families of Graphs

Proc. Workshop Maths. Comp. Sci & Tech. Edu.

Bucharest, Romania, pp. 46–54, 26-27 May 2023

https://www.researchgate.net/publication/374551791_Chromatic_Polynomials_for_Some_Families_of_Graphs

 

V.-F. Dragoi – Invited presentation

Code-based Public-key Encryption Schemes

School of Electrical Engineering and Telecommunications (EET)

University of New South Wales (UNSW)

Sydney, Australia, 24 Nov. 2023

https://www.unsw.edu.au/engineering/our-schools/electrical-engineering-telecommunications

​

Echipa
Publicatii
Prezentari
bottom of page